Potential Impacts of Climate Change and Variability on Transportation Systems and Infrastructure – *The Gulf Coast Study*

North Carolina Briefing *March 5, 2008*

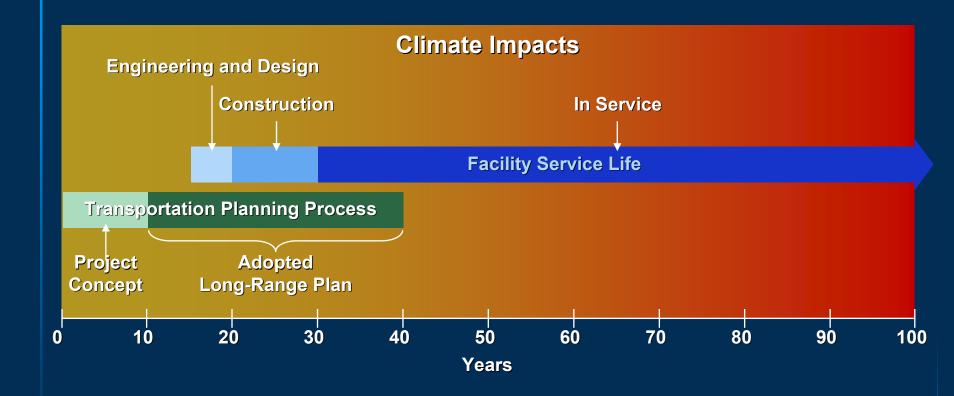
Mike Savonis Team Leader for Air Quality FHWA

How Will Climate Change Affect Transportation Decisions?

Climate Change and Variability

- Temperature change
- Precipitation change
- Accelerated sea level rise
- Increased storm surge and intensity

Transportation Decision-Making


- System planning and investment
- Project development
- Operations
- Maintenance
- System assessment

Transportation Impacts

- Location
- System design
- Design specifications
- Materials
- Safety
- Emergency management/ evacuation
- Replacement/ repair schedules
- Investment levels

Transportation Timeframes vs. Climate Impacts

U.S. DOT / USGS Gulf Coast Study

Potential Impacts of Climate Change and Variability on Transportation Systems and Infrastructure

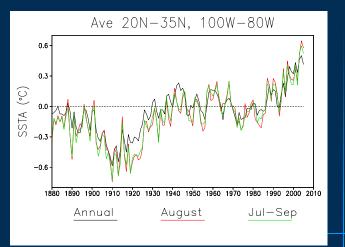
Overall Climate Impacts - Key Drivers for Analysis

- Accelerated relative sea level rise
- Increased storm surge and storm intensity
- Changes in temperature
- Changes in precipitation

Draft Results – Gulf Coast StudyTrends in Climate and the Natural Environment

- Average temperature is likely to increase by 2°- 4° F
 by 2050
 - More hot days: Extreme daily high temps will also increase
- Models show mixed results for changes in average precipitation
 - Intensity of rainfall events, however, will likely increase

Houston, TX


The magnitude of impacts worsen as emissions increase under the IPCC scenarios

Draft Results – Gulf Coast StudyTrends in Climate and the Natural Environment

- Relative sea level will likely increase 1 to 6 feet
 - Massive inundation due to relative sea level rise
 - Relative sea level includes:
 - Climate-induced impacts of thermal expansion and ice melt;
 and
 - Sinking land masses (subsidence) in the central Gulf Coast
- Hurricane vulnerability is high today and may worsen
 - Increase in storm intensity is likely

Sea surface temperature trend in the Gulf of Mexico region (Source: Smith and Reynolds 2004)

Land Surface Elevations Subject to Flooding in the Study Area under High, Mid, and Low Sea Level rise Scenarios (Ensemble of 7 GCMs under Four Emission Scenarios) (SLRRP Model results in centimeters)

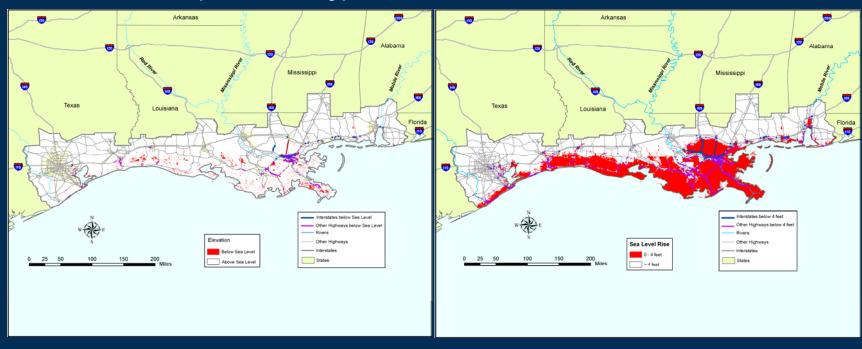
Year 2050	Low		Year 2100	Low					
	A1FI	B1	A1B	A2		A1FI	B1	A1B	A2
Galveston, Texas	83.0	80.9	83.4	83.4	Galveston, Texas	130.7	117.0	124.9	127.0
Grand Isle, Louisiana	107.5	106.0	108.8	106.3	Grand Isle, Louisiana	171.2	159.7	168.7	167.6
Pensacola, Florida	48.0	47.8	48.4	53.7	Pensacola, Florida	83.9	70.1	78.2	75.2
Year 2050	Mid			Year 2100	Mid				
	A1FI	B1	A1B	A2		A1FI	B1	A1B	A2
Galveston, Texas	88.9	86.7	88.7	88.8	Galveston, Texas	146.0	129.5	137.1	140.8
Grand Isle, Louisiana	113.6	111.8	114.2	111.8	Grand Isle, Louisiana	185.3	171.4	180.2	181.3
Pensacola, Florida	53.9	53.6	53.7	60.0	Pensacola, Florida	99.2	82.6	90.3	89.3
Year 2050	High			Year 2100	High				
	A1FI	B1	A1B	A2		A1FI	B1	A1B	A2
Galveston, Texas	94.8	92.5	93.9	94.3	Galveston, Texas	161.3	142.0	149.3	154.5
Grand Isle, Louisiana	119.6	117.6	119.6	117.3	Grand Isle, Louisiana	199.6	183.1	191.7	195.1
Pensacola, Florida	59.8	59.4	58.9	66.3	Pensacola, Florida	114.5	95.0	102.5	103.5

Draft Results – Gulf Coast Study

Trends in Climate and the Natural Environment

- The central Gulf Coast is particularly vulnerable to climate change over the next 50-100 years
- Climate change impacts need to be integrated with other coastal / environmental effects
- The timing of impacts is not clear; abrupt change cannot be ruled out

Draft Results - Gulf Coast StudyVulnerability Due to...Relative Sea-Level Rise


- Relative sea level rise (due to climate change and subsidence) of 4 feet could permanently flood:
- ✓ 24% of interstate miles, 28% of arterial miles, New Orleans Transit
- ✓ 72% of freight / 73% of non-freight facilities at ports
- ✓ 9% of the rail miles operated, 20% of the freight facilities, no passenger stations
- √ 3 airports
- ✓ Temporary flooding in low-lying areas due to increased heavy downpours will broaden affected areas

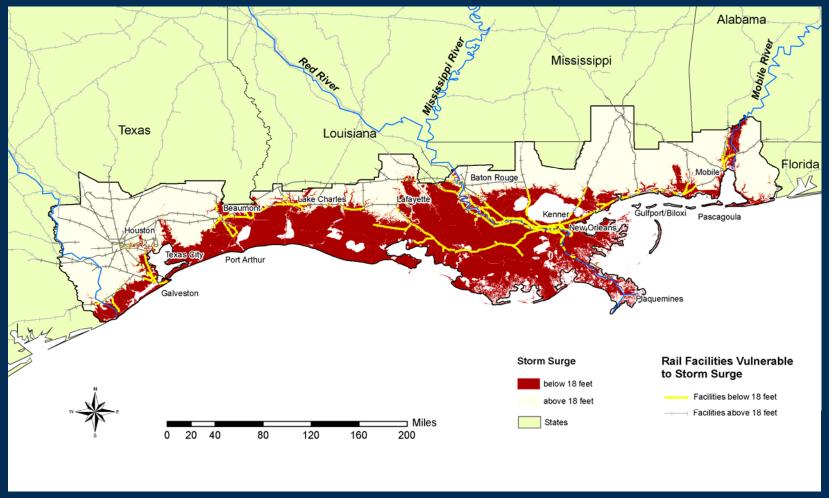
Draft Results — Gulf Coast Study Highways Vulnerable to Relative Sea Level Rise

Baseline (Present Day)

4 Feet of Sea Level Rise

Draft Results –Gulf Coast Study Vulnerability Due to...Storm Surge

- Transportation infrastructure that is vulnerable to 18 feet of storm surge includes:
- ✓ 51% of interstate miles, 56% of arterial miles, and most transit authorities
- ✓ 98% of port facilities vulnerable to surge and 100% to wind
- ✓ 33% of rail miles operated, 43% of freight facilities
- ✓ 22 airports in the study area at or below 18 feet MSL
- ✓ Potentially significant damage to offshore facilities


Hurricane Katrina Damage to Highway 90 at Bay St. Louis, MS

Source: NASA Remote Sensing Tutorial.

Freight Rail Lines Potentially Vulnerable to Storm Surge of 18 feet

Draft Results – Gulf Coast Study Vulnerability Due to...Temperature increases

- As temperatures increase, operations will be affected:
 - Potential change in maintenance and construction practices
 - Increased use of energy for refrigerated storage
 - Potential rise in rail buckling
 - May result in impacts to aircraft performance and runway utilization

Draft Results – Gulf Coast Study Transportation Planning

- Climate change is rarely considered today, but the longevity of infrastructure argues for its integration
- Current practice focusing on a 20-year time frame is not well-suited to the assessment of impacts due to the natural environment
- It is useful to examine the vulnerability of the intermodal system in addition to specific facilities

The Potential Impacts of Global Sea Level Rise on Transportation Infrastructure (NC): 6 cm

The Potential Impacts of Global Sea Level Rise on Transportation Infrastructure (NC): 6 cm

NC State Statistics							
	6 cm						
Increase in Eustatic SLR	Regular Inundation		At-Risk		Total		
Length	Km	% Affected	Km	% Affected	Km	% Affected	
Interstates	0.9	0%	1.5	0%	2.4	0%	
Non-Interstate Principal Arterials	112.9	2%	231.6	3%	344.6	5%	
NHS Minor Arterials	180.9	4%	161.7	3%	342.6	7%	
National Highway System (NHS)	256.5	4%	338.7	5%	595.2	8%	
Rails	86.2	1%	258.7	3%	344.8	4%	
Area	Acres	% Affected	Acres	% Affected	Acres	% Affected	
Ports	225	49%	167	36%	392	85%	
Airport Property	635	2%	3,238	9%	3,873	11%	
Airport Runways	44	2%	237	8%	281	10%	
Total Land Area Affected	1,682,708	5%	1,466,079	5%	3,148,787	10%	

The Potential Impacts of Global Sea Level Rise on Transportation Infrastructure (NC): 48.5 cm

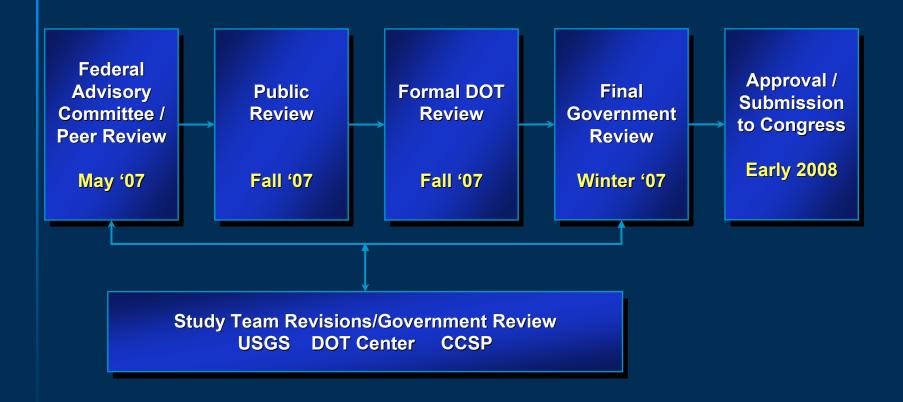
The Potential Impacts of Global Sea Level Rise on Transportation Infrastructure (NC): 48.5 cm

NC State Statistics								
	48.5 cm							
Increase in Eustatic SLR		egular nundation	A	t-Risk	Total			
Length	Km	% Affected	Km	% Affected	Km	% Affected		
Interstates	1.4	0%	7.3	0%	8.7	1%		
Non-Interstate Principal Arterials	201.8	3%	218.1	3%	419.9	6%		
NHS Minor Arterials	279.9	6%	90.6	2%	370.5	8%		
National Highway System (NHS)	419.5	6%	263.0	4%	682.6	10%		
Rails	193.8	2%	218.1	3%	411.8	5%		
Area	Acres	% Affected	Acres	% Affected	Acres	% Affected		
Ports	320	70%	118	26%	439	95%		
Airport Property	2,015	5%	2,276	6%	4,291	12%		
Airport Runways	132	5%	191	7%	323	12%		
Total Land Area Affected	2,341,767	7%	1,149,723	4%	3,491,490	11%		

A Risk Assessment Approach to Transportation Decisions

Risk Assessment

- Exposure
- Vulnerability
- Resilience


Adaptation Response

- Protect
- Accommodate
- Retreat

Greater Resilience

Gulf Coast Study: Next Steps

